Новости науки: Поиски темной материи продолжаются.

Автор: Ярослав Космос . Опубликовано в категории: АСТРОФИЗИКА

1 1 1 1 1 Рейтинг 5 [6 Голоса (ов)]

Инструмент для поиска темной материи LUX.

В отличие от рентгеновских лучей, которые не видно невооруженным глазом, но оборудование может измерить, ученым еще предстоит обнаружить темную материю после трех десятилетий поисков и самых чувствительных инструментов в мире.

Ученые пытаются найти ее в некоторых из самых изолированных в мире районов - глубоко под землей и в космическом пространстве.

Следы влияния темной материи

Как и отпечатки лап, оставленные неуловимым животным, космос полон признаков существования темной материи, но мы не видим ее напрямую. Однако, ТМ составляет около 84,5% от общей массы материи во Вселенной.

Астроном Фриц Цвикки(Fritz Zwicky) обнаружил признаки темной материи в 1933 году, когда он рассматривал скопление галактик. Он заметил, что они излучали намного меньше света, чем они должны были быть, принимая во внимание их массу. После выполнения некоторых вычислений, он понял, что большая часть массы кластера не излучает свет или электромагнитное излучение на всех длинах волн.

Ученые считают, что темная материя состоит, скорее всего, из совершенно новых элементарных частиц, которые выходят за рамки стандартной модели, в которую все известные в настоящее время частицы вписываются. Эти, пока еще неизвестные частицы, будут взаимодействовать слабо или вообще не взаимодействовать с другими известными частицами, что делает их обнаружение очень трудной задачей. Есть два вероятных типа частиц, которые теоретики постулировали для описания характеристик темной материи: вимпы и аксионы.

Слабовзаимодействующая массивная частица (WIMP) будет электрически нейтральной и от 100 до 1000 раз более массивной, чем протон. Аксионы не будут иметь электрический заряд и будут чрезвычайно легкими - возможно, как одна-триллионная массы электрона.

На охоту за темной материей

Мало того, что темная материя не излучает свет или электромагнитное излучение, она даже не взаимодействует с ними. На самом деле, единственное взаимодействие, с помощью которого темная материя взаимодействует с обычной материей - это гравитация. Вот почему миллионы частиц темной материи проходят через обычную материю незамеченными. Для того, чтобы захватить хотя бы одну частицу, ученые используют очень сложное оборудование.

Большой подземный Ксеноновый эксперимент и прямое обнаружение

Большой подземный Ксеноновый детектор (LUX), эксперимент, который проходил в течение почти двух лет и закончился в мае 2016 года, был одним из наиболее значительных усилий для непосредственного обнаружения темной материи. Об этом эксперименте Вы можете прочесть здесь

Кроме того, Земля имеет экстраординарное количество радиоактивного "шума". Пытаясь обнаружить взаимодействия темной материи на поверхности Земли походит на попытку услышать кого-то, кто шепчет через класс шумной школы.

Альфа Магнитный Спектрометр(АМС) и косвенное обнаружение

АМС работает в рамках эксперимента, нацеленного на косвенное обнаружение ТМ.

Некоторые теоретики предполагают, что сталкивающиеся частицы темной материи могут аннигилировать, производя две или более «нормальных» частиц. Теоретически, сталкивающиеся WIMP'ы могут производить позитроны. Альфа магнитный спектрометр(АМС) на МКС захватывает космические лучи. Если AMС обнаружит большое количество позитронов в спектре высоких энергий, где их они обычно нет, то это может быть признаком темной материи.

"AMC является прекрасным инструментом," сказал Майкл Саламон(Michael Salamon) из отдела Физики Высоких Энергий(НЕР) при департаменте энергетики США. "Все признают, что это самый высокоточный в мире измеритель космических лучей за пределами Земли."

Альфа Магнитный Спектрометр(АМС), установленный на корпусе МКС.

До сих пор AMС зафиксировал 25 миллиардов событий. Он обнаружил избыток позитронов в пределах соответствующего диапазона, но нет достаточно доказательств, чтобы утверждать окончательно, где позитроны возникают. Существуют и другие возможные источники высокоэнергетичных позитронов, такие как пульсары.

Производство темной материи на Большом Адронном Коллайдере

Теоретически, ускоритель элементарных частиц может создать темную материю сталкивая стандартные частицы при высоких энергиях. В то время как ускоритель не может обнаружить саму темную материю, она могла бы указать на "недостающую" энергию, производимую от такого взаимодействия.

Извлеченные уроки и будущее исследований

До настоящего времени ни один эксперимент не дал окончательное утверждение на присутствие темной материи. Но, отрицательный результат - тоже результат. Эти эксперименты сузили поле нашего поиска.

Ученые ищут ТМ по целому ряду сильных взаимодействий и масс. "Поскольку эксперименты становятся более чувствительными, мы начинаем устранять теоретические модели," сказал Саламон.

Поиски ТМ далеки до завершения. С каждым битом данных, мы приближаемся к пониманию этого вездесущего, еще неуловимого аспекта Вселенной.

НАУЧНАЯ РАБОТА: ПО МАТЕРИАЛАМ:

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2019-02-02 17:17:21 Ученые используют различные инструменты для обнаружения "неуловимой" Темной Материи.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

Слияние нейтронных звезд подтверждает десятилетия предсказаний

Это снимок первых миллисекунд слияния двух нейтронных звезд

17 августа лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) обнаружила пятый отпечаток огромного возмущения в пространстве-времени. В отличие от первых четырех рядов ряби, которые отражали столкновения между двумя черными дырами, форма этих пространственно-временных искажений предполагала столкновение двух нейтронных звезд.

В то время, как столкновения черных дыр не оставляют практически ни какого следа, кроме гравитационных волн, столкновение нейтронных звезд может наблюдаться и вверх, и вниз по электромагнитному спектру. «Когда нейтронные звезды сталкиваются, весь ад разрывается», - сказал Франс Преториус, профессор физики Принстона (Принстонские исследователи десятилетиями изучали нейтронные звезды). «Они начинают производить огромное количество видимого света, а также гамма-лучи, рентгеновские лучи, радиоволны ...».

Нейтронные звезды и гамма-лучи: Богдан Пачинский и Джереми Гудман

Подробнее...

Новости космонавтики: До 2018 года NASA продолжит пользоваться услугами Роскосмоса по доставке астронавтов на МКС.

Логотип МКС на фоне галактики

Именно до этого года включительно действует контракт между NASA и Роскосмосом и обе эти компании не изъявили желание его продолжать. Прибытие и отбытие космонавтов на МКС осуществляется кораблём Союз-ТМ, на данный момент альтернативы этому пилотируемому кораблю нет.

На непродление контракта в большой степени повлияло значительное «охлаждение» отношений между Россией и США. Однако это не означает, что проект МКС будет закрыт. Об этом заявил глава NASA Чарльз Болден, сообщает The Washington Post.

Подробнее...

Запуск ракеты-носителя Atlas V со спутником GOES-S

Запуск ракеты-носителя Atlas V со спутником GOES-S

Новости космонавтики:
Запуск произведут с мыса Канаверал, США. GOES-S представляет собой метеорологический спутник серии GOES. Все аппараты серии находятся в ведении американской NESDIS (Национальная информационная служба спутниковых данных об окружающей среде).

Спутники обеспечивают прогноз погоды, отслеживают штормы, помогают в проведении метеорологических исследований. С их помощью осуществляется передача непрерывного потока данных об окружающей среде, которые потом используют такие структуры, как NWS (Национальная служба погоды).

Подробнее...