Радиационные пояса Сатурна, кардинально изменилось представление

Автор: Леонид Гляделов . Опубликовано в категории: АСТРОФИЗИКА

1 1 1 1 1 Рейтинг 0 [0 Голоса (ов)]

Радиационные пояса Сатурна 2010 и 2012г.

Радиационные пояса Земли и Сатурна отличаются сильнее, чем предполагалось ранее. В этих поясах очень энергичные частицы, такие как электроны и протоны, движутся вокруг планеты с большими скоростями - захваченными ее магнитным полем.

В случае Земли, солнечный ветер, ток заряженных частиц от Солнца, различающийся по силе, контролирует интенсивность радиационного пояса как прямо, так и косвенно. Однако радиационные пояса Сатурна полностью развиваются независимо от солнечного ветра и вместо этого оказывают решающее влияние спутники газового гиганта.

Эти результаты опубликованы сегодня в журнале Nature Astronomy группой исследователей из Института исследований солнечной системы Макса Планка (MPS) в Германии, которые являются ведущими наиболее всесторонним исследованием по этому вопросу на сегодняшний день.

Активность Солнца - и вместе с ним сила солнечного ветра - следует за одиннадцатилетним циклом. Исследование долговременного влияния солнечного ветра на излучение планеты требуют терпения и космических полетов значительной длины. «Если миссия Кассини в систему Сатурна закончилась бы через четыре года, как первоначально планировалось, мы бы никогда не смогли достичь этих результатов», - объясняет д-р Элиас Русос из MPS. К счастью, миссия несколько раз расширялась. Таким образом, магнитосферный прибор для визуализации (MIMI) с детектором частиц высокой энергии (LEMMS) на борту Кассини смог записать распределение заряженных частиц в окрестностях Сатурна в течение периода времени, включающего полный солнечный цикл. «Такие обширные данные на местах о радиационных поясах планеты в основном доступны только для Земли», - говорит исследователь MPS доктор Норберт Крупп, возглавляющий команду MIMI-LEMMS.

Как показывают данные Кассини, протонные радиационные пояса Сатурна являются гигантскими: они достигают от самого внутреннего кольца планеты до орбиты Луны Тетис, и следовательно, более 285 000 километров в космос. Решающее различие с Землей: пока наша луна находится далеко за пределами магнитосферы и радиационных поясов, радиационные пояса Сатурна содержат несколько ее спутников, таких как большие луны Янус, Мимас и Энцелад. «Луны Сатурна влияют на радиационные пояса значительно», - говорит Крупп. Они действуют как своего рода как пограничная стенка для очень энергичных частицах, в частности протонов. Любые протоны, диффундирующие далее внутрь от места их происхождения поглощаются, и таким образом останавливаются, когда они взаимодействуют с Луной. «Это создает области в радиационном поясе, которые полностью изолированы друг от друга», - говорит Русос. В отличие от Сатурна, частицы, возникающие вне радиационных поясов Земли, могут перемещаться внутрь и наполнять его содержимым.

На Земле частицы высокой энергии, образующие радиационные пояса, имеют два происхождения. Некоторые из них предоставляются непосредственно солнечным ветром. Другие - результат пассивных протонов экстремальной энергии, происходящих из нашей Галактики, называемых Галактическими Космическими Лучами. Когда Галактические космические лучи достигают атмосферы планеты, она приводит в движение цепочку реакций, в конце которой создаются электроны и протоны высоких энергий. Поскольку солнечный ветер частично экранирует и таким образом модулирует это космическое излучение , активность Солнца также играет решающую роль в этом процессе.

В системе Сатурна всё по другому. «В первые годы миссии Кассини мы наблюдали, что солнечный ветер может привести к резким изменениям в магнитосфере Сатурна», - говорит Русос. «Однако это прямое влияние внезапно остановилось на орбите Луны Тетис».

Тем не менее, сначала все указывало на то, что солнечный ветер все еще помогает формировать радиационные пояса - хотя бы косвенно: первые годы миссии Кассини совпадали со снижением активности Солнца, интенсивность радиационных поясов увеличивалась, как ожидалось. Однако в период с 2010 по 2012 год наблюдалось резкое падение интенсивности, которое не могло быть связано с модуляцией солнечного ветра Галактических космических лучей, которая изменяется в гораздо более длительные временные рпромежутки.
А также солнечные бури, сильные извержения частиц и излучение Солнца не могли нести ответственность. Хотя время от времени на Земле такие события вызывают внезапное снижение интенсивности, обширные симуляции, проведенные исследователями, показывают, что этот эффект также не может объяснить ежегодное снижение, наблюдаемое Кассини.

.....

Скорее всего, ученые подозревают, что чрезвычайное ультрафиолетовое излучение Солнца может быть ответственным за это. Это излучение может локально нагревать атмосферу планеты. Получающиеся в результате турбулентные ветры передают эту информацию в ионосферу, которая «привязана» к магнитосфере через магнитное поле планеты. В результате протоны в радиационных поясах распространяются гораздо эффективнее, чем обычно. По пути они сталкиваются с лунами Сатурна и поглощаются: интенсивность радиационных поясов значительно уменьшается.

«Мы наблюдаем, что падение интенсивности в протонных радиационных поясах Сатурна точно совпадает с сильными изменениями излучения EUV от Солнца», - говорит Руссос о новых результатах. Поэтому возможно, что при солнечном ветре Солнце не влияет на радиационные пояса.
«Наши анализы также напоминают нам, насколько сильно свойства радиационных поясов зависят от структуры конкретной системы планет, т.е. положения и количества лун в случае с Сатурном», - говорит Русос. Это знание также может быть полезно для взгляда за пределы солнечной системы: если в будущем могут быть обнаружены радиационные пояса экзопланеты, эти данные могут также косвенно содержать информацию о свойствах и структуре системы.

НЕ ЗАБУДЬТЕ ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ:

2017-10-30 23:56:04 Радиационные пояса Земли и Сатурна отличаются сильнее, чем предполагалось ранее. В этих поясах очень энергичные частицы, такие как электроны и протоны, движутся вокруг планеты с большими скоростями - захваченными ее магнитным полем.
AstroNews Logo

Добавить комментарий

Комментарии нарушающие ПРАВИЛА будут удаляться, а их авторы возможно будут забанены.

СЛУЧАЙНЫЕ НОВОСТИ КОСМОСА

Незначительное слияние сверхмассивной черной дыра в самом разгаре

Глубокое изображение Messier 77, снятое с Hyper Suprime-Cam (HSC), установленное на телескопе Subaru.

Галактика Messier 77 (M77) славится своим сверхактивным ядром, которое выделяет огромную энергию по электромагнитному спектру, от рентгеновского до радиоволн. Тем не менее, несмотря на его очень активное ядро, галактика выглядит как любая нормальная тихая спираль. Нет никакого визуального признака того, что заставляет его центральную область излучать так активно. Давно уже загадка, почему только центр M77 настолько активен. Астрономы подозревают, что произошло давнее событие, связанное с тонущей черной дырой, которая могла бы вывести ядро ​​на высокую передачу.

Чтобы проверить свои идеи о том, почему центральная область M77 излучает огромное количество радиации, команда исследователей из Национальной астрономической обсерватории Японии и Японского открытого университета использовала телескоп Subaru для изучения M77. Беспрецедентный глубокий образ галактики раскрывает доказательства скрытого незначительного слияния миллиардов лет назад. Это открытие дает важные доказательства для незначительного происхождения слияния активных галактических ядер.

Подробнее...

Новости науки: Новый метод анализа химического состава звезд поможет ученым отсеивать кандидатов на Землю 2.0

Химический состав звезд поможет отсеять кандидатов в Земли 2.0.

Исследователи Йельского университета Дебра Фишер(Debra Fischer) и Джон Майкл Брюер(John Michael Brewer), в новом исследовании, которое появится в Astrophysical Journal, описывают методику компьютерного моделирования, которая дает более четкое представление о химии звезд, а также позволяет более точно предполагать наличие землеподобных планет у них.

Методика предлагает новый способ оценки обитаемости и возможности биологической эволюции экзопланет.

Подробнее...

Новая модель для исследования активности вокруг квазаров, черных дыр

Это впечатление художника показывает, как выглядел ULAS J1120 + 0641. Очень далекий квазар, работающий на черной дыре. Массой в 2 миллиарда раз больше, чем у солнца.

Исследователь Университета Вайоминга сыграл ключевую роль в исследовании, которое предполагает, что недавно разработанная компьютерная модель может более точно объяснить разнообразие областей квазиарной широкой эмиссионной линии, которые представляют собой облака горячего ионизированного газа, которые окружают сверхмассивные черные дыры, питающиеся в центре галактик.

«Мы пытаемся получить более подробные ответы о спектральных широкополосных регионах, которые помогают нам диагностировать массу черных дыр», - говорит Майкл Брайттон, профессор UW в Отделе физики и астрономии. «Люди не знают, откуда берутся эти регионы с широкой эмиссией, или от природы этого газа».

Подробнее...